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Hg2Cl2, (Cl-) = 1. This value at 30° was evalu­
ated by graphical extrapolation of the e.m.f. values 
for the cell Hg | Hg2Cl2, HCl | H2 at 30° derived from 
the data of Ellis4 and Eo was the required potential 
of the molybdenum system referred to the standard 
hydrogen electrode. 
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Fig. 4. 

The equation for the relationship between E and 
Eo can be rearranged as 

Introduction 

In a series of papers,1-4 it was recently shown that 
the polarographic method is a powerful tool in the 
quantitative study of the kinetics of irreversible 
electrode processes. In conventional polarography 
it is not possible to study in the same experiment 
both the cathodic and anodic reactions correspond­
ing to an oxidation-reduction system, but this result 
can be achieved by applying the oscillographic 
method originated by Heyrovsky6 and improved by 
Sevcik.6 In this oscillographic method, a substance 
Ox is reduced at the dropping mercury electrode by 
varying rapidly the potential of this electrode to­
ward increasingly cathodic values. The substance 
Red resulting from the reduction of substance Ox is 

(1) P. Delahay, T H I S JOURNAL, 73, 4944 (1951). 
(2) P. Delahay and J. E. Strassner, ibid., 73, 5219 (1951). 
(3) J. E. Strassner and P. Delahay, ibid., 74, 6232 (1952). 
(4) P. Delahay, ibid., in course of publication. 
(5) J. Heyrovsky, Faraday Soc Disc, 1, 212 (1947); several refer­

ences to previous papers dealing with the same topic are quoted in this 
review. 

(6) A. Sevcik, Collection Czechoslov. Chem. Commun., 13, 349 
(194S). 

E - ^ r In [HCl] = E0' + ^ r n / s / W / i 

The values for the left-hand side of this equation 
are plotted against VM on the curve shown in Fig. 
4. From the plot it becomes clear that graphical 
extrapolation can lead to a reliable limiting value for 
Ed which was found to be 0.2145 v. This gave E0 = 
0.2145 + 0.2680 = 0.4825 v. which agrees very well 
with the value 0.4826 v. obtained against the hydro 
gen electrode. The fact that the set of oxidation-
reduction potentials below 3 N acid, when plotted 
against VM> lie on a straight line which can be ex­
trapolated to zero ionic strength, permits the evalu­
ation of Eo if it is assumed that the profound effect 
of hydrochloric acid on the molybdenum ions would 
vanish at infinite dilution. However, in the ab­
sence of any other evidence as to.the species of 
molybdenum ions present in solution at zero acid 
concentration, it is necessary to be very cautious 
with regard to designation of the extrapolated value 
as a true standard potential of the Mo(VI)-Mo(V) 
system. 

ALEXANDRIA, EGYPT 

then reoxidized by bringing the potential back to 
its original value. By comparing the cathodic and 
anodic patterns thus obtained, one can decide 
whether the electrode process is virtually reversible 
or irreversible. These studies of the Czechoslovak 
school, although interesting, were of a purely quali­
tative nature, and the value of this very ingenious 
method would be enhanced if a quantitative treat­
ment of irreversible oscillographic waves were avail­
able. Such a treatment is reported here. 

The present work constitutes the solution of one 
of the three fundamental problems t>f the theory of 
oscillographic polarography. The other two prob­
lems deal with electrode processes for which it can 
be assumed that equilibrium is achieved either be­
tween two soluble species or between a soluble and 
an insoluble species. The theory of the former 
type of oscillographic waves was reported independ­
ently by Randies7 and Sevcik,6 whereas the treat­
ment of the latter type of waves was developed in 
this Laboratory.8 

(7) J. E. B. Randies, Trans. Faraday Soc, U, 327 (1948). 
(8) T. Berzins and P. Delahay, T H I S JOURNAL, 75, 555 (1953). 
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A theoretical treatment of irreversible oscillographic waves is developed for the case of a linear variation of the electrode 
potential. This treatment is based on the following hypotheses: 1. The rate of electron transfer is proportional to the 
concentration of the substance reacting at the electrode surface. 2. The rate of electron transfer is an exponential function 
of the electrode potential. The boundary value problem is solved by expressing the concentration of reacting species at the 
electrode surface in terms of the flux of this substance at the electrode surface, and by solving the resulting integral equation. 
The current-potential curve exhibits a peak whose height is proportional to various factors among which the most important 
are: the concentration of reducible substance, the square root of the rate of potential change, the number of electrons in­
volved in the over-all electrochemical process, the square root of the transfer coefficient, and the square root of the number of 
electrons involved in the rate-determining step. The potential corresponding to the peak of the wave is calculated, and it is 
shown that this potential is a function of the rate of potential change. The theoretical conclusions are in good agreement with 
experimental data for the reduction of zinc tetrammine ion. Some features of the oscillographic method in which the anodic 
wave is recorded immediately after the cathodic wave, are also discussed. 
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Initial and Boundary Conditions 
Consider the irreversible electrolytic reduction of 

a substance Ox to another substance Red. Fur­
thermore, assume that the potentials at which sub­
stance Ox is reduced, are such that the influence of 
the anodic process, i.e., the oxidation of substance 
Red, is negligible. This assumption is entirely 
justified for the majority of the irreversible waves 
which are encountered in oscillographic polarog­
raphy. If the electrolytic reduction of substance 
Ox is a first-order process, its rate q(t) is given by 
an equation of the type 

q{t) = kiC(.o,t) (D 
where q(t) represents the number of moles of sub­
stance Ox being reduced per unit of time and per 
unit area t sec. after the beginning of the electroly­
sis; kt is the rate constant for the electrode process 
at the potential at which the rate is measured; and 
C(o, t) is the value—at the electrode surface—of the 
function C(x, t) representing the concentration of 
substance Ox as a function of the distance * from 
the electrode and the time t. 

In order to calculate the current corresponding to 
the above reaction, it is necessary to determine the 
function C(x, t). Such a problem is solved by ap­
plying Fick's second law, i.e., by solving the partial 
differential equation for the corresponding diffusion 
problem. For the sake of simplicity it will be as­
sumed here that the electrode is plane. In the case 
of the dropping mercury electrode, this simplifying 
hypothesis is entirely justified because the influence 
of the curvature of the electrode can be neglected9 

on account of the short duration of the recording of 
a wave (less than 1 sec). 

The boundary condition for the present problem 
is obtained by equating the rate q(t) to the flux of 
substance Ox at the electrode surface. Thus 

q(t) = k,C(o,l) = D (bC(o,t)/Z>x) (2) • 

where D is the diffusion coefficient of substance Ox, 
and t is the time elapsed since the beginning of the 
electrolysis. 

The boundary condition (2) is also encountered 
in the theory of irreversible waves in conventional 
polarography,1'2 but there, kt can be assumed to be 
independent of time since the potential of the drop­
ping mercury electrode is virtually constant during 
the drop life. In oscillographic polarography, such 
an hypothesis cannot be made, and it is necessary to 
introduce, at this stage of the deviation, a relation­
ship between {he rate constant kt and the potential 
of the dropping mercury electrode. As it has been 
shown in various experimental studies and also in a 
development of the absolute rate theory, the rate 
constant ki is in many cases an exponential function 
of the electrode potential. Therefore, if one as­
sumes that the potential during the electrolysis var­
ies linearly with time, as it is the case in the Sevcik 
method,6 the rate constant kt is determined by the 
equation 

k, = h exp (/3O (3) 

(9) The validity of this assertion can be verified by comparing equa­
tions for linear and spherical diffusion which are given, for example, by 
I. M. Kolthoff and J. J. Lingane in "Polarography," Interscience Pub­
lishers, Inc., New York, N. Y., 1941, Chapter II. 

where fa and /3 are constants depending on the re­
lationship between the electrode potential and time. 
The values of fo and /3 will be explicitated below. 

The combination of equations (2) and (3) yields 
the boundary condition for the present problem. 
The initial condition, on the other hand, is simply 
C(x, O) = Co, where Co is the original concentration 
of substance Ox. 

Derivation of the Current 
The solution of the diffusion problem for the 

boundary condition derived in the previous section 
involved serious difficulties because of the presence 
of the function of time exp (/3/) in the boundary 
condition. Such an elegant method as the Laplace 
transformation cannot be applied, and it is necessary 
to use a less direct approach. The problem, how­
ever, can be solved if one considers that, from the 
point of view of oscillographic polarography, it is 
not necessary to know C(x, t), but that it is sufficient 
to calculate the flux of reducible substance at the 
electrode surface. Once the flux is known as a 
function of time, the derivation of the current is a 
trivial matter. 

The concentration C(o, t) can be expressed in 
terms of the flux q(t) by "applying Duhamel's theo­
rem.10 Thus 

C(x,t) = C0 - ^y7J0' q(t - r) exp ( - J g - ) ^ 

(4) 

where T is an auxiliary variable of time. By intro­
ducing into equation (4) the following value of the 
function q(t), as obtained from (2) and (3) 

q(t) = h exp (fit) C{o,t) (5) 

and by transforming the resulting equation after the 
introduction of the function <p(t) and the variable 6 
defined below, one obtains a Volterra integral equa­
tion of the second kind.11 Thus 

v(t) = C(o,t)/C, 
B = I - T 

and 

^) = 1-(wJ^ ) e x p 
m 

de 
(t - S)1A 

(6) 
(7) 

(8) 

Further transformation of equation (8) is desirable be­
cause of the numerical values of k<, and J3 involved in the 
present problem (see below). By making the substitutions 

y = Pt (9) 
z = 00 (10) 

ko 
= exp (— a) (H) 

(12) 
(TT^)1A 

KyV" v{t) 
equation (8) becomes 

Ky) = 1 - J T Kz) exp (z - a) ( y ^z)l/i (13) 

This equation will be used below in the course of the dis­
cussion, but it is convenient to make one further substitution 
and to introduce the function x(y) defined by 

x(y) = Ky) exp (y - o) (14) 

(10) H. S. Carslaw and J. C. Jaeger, "Conduction of Heat in Solids," 
Oxford University Press, Oxford, 1947, p. 57, eq. (9). 

(11) For a general discussion of integral equations see for example H. 
Margenau and G. M. Murphy, "The Mathematics of Physics and 
Chemistry," D. Van Nostrand Co., Inc., New York, N. Y., 1943, 
Chapt. XIV. Reference to classics in the field are given in this book. 
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where x(y) is proportional to the flux as follows from equa­
tions (5), (6) and (12). 

The combination of (13) and (14) yields 

Cy Az 
X<y) =- exp (y - a) - exp (y - a) I x(s) r rp 

Jo (y - Z) '• 
(15) 

Using intervals of width h and letting y = ph and z = iJu 
one may approximate the integral in equation (15) by the 
sum 

J 0 X(«) (y _ ,)V, - 2>*fr* ~ ^) (16) 
To determine the values of 5M , Huber12 approximated 

the unknown function by linear expressions in the individual 
intervals, but a greater accuracy is obtained by using a 
quadratic expression for each two consecutive intervals as 
was recently suggested by Wagner.13 It. the following cal­
culations Wagner's procedure has been used. 

By substituting the value of the integral (16) in equation 
(IS), one obtains the recurrence formula 

1 - Y1B1^pH - „ft) 

x(M) = T^—7mnr- (17) 
exp (a — ph) +B0 

From (17), the stepwise calculation of the current 
is immediate if one recalls that the current is the 
product of the flux of reducible substance at the 
electrode surface by the charge involved in the re­
duction in one mole of reducible substance. Com­
bining (5), (6), (11), (12) and (14), one obtains 

i = nFAir'/^/'D1/''CxW (18) 

where n is the number of electrons involved in the 
electrode process; F the faraday; A the electrode 
area, and the other symbols have already been de­
fined. 

From (18) it is seen that the current i is known 
provided that the function x(fit) is known. In 
principle, it is necessary to determine \{(3t) for a 
wide range of values of the parameter a defined by 
(11), i.e., for various values of the rate constant ko 
at time t = 0 (see equation (3)). In oscillographic 
polarography ko is always much smaller than 
(rfiD)1''1 and thus, according to equation (11), 
exp(— a) « 1. If exp ( — a.) is smaller than 1O-3, 
it is sufficient to compute the solution of equation 
(15) for only one particular value of a, e.g., a = 7, 
whereupon values of x(y) for a > 7 may be ob­
tained with the aid of the transformation in equa­
tion (23). This can be shown in the following 
manner. 

Letting s = y — z, equation (13) can be rewritten in the 
form 

X y ds 

f(y - s) exp (y - s - a) ^ - (19) 
The solution \p (y) depends upon the value of a in (19), 

i.e., on the initial rate constant k0 (see eq. ( H ) ) . If a in 
(19) is replaced by a larger value a = a + Aa, another solu­
tion tp*(y) defined by (20) is to be expected. Thus 

4,*{y) = l _ P ,/,* (y _ s) exp (y - s - a - Ac) ̂  (20) 

For the argument y + Aa one has from (20) after sub­
dividing the integral 

(12) A. Huber, Monatshefle f. Mathematik, u. Physik, 47, 240 
(1939). 

(13) C. Wagner, to be published elsewhere. 

4,*{y + Aa) = 1 -

Cy ds 
I t*{y + Aa - s) exp (y - s - a) T7- -

J o •""• 

4>*{y + Are - s) exp (y - s - a) - £ (21) 
Jy s "! 

Since tp*(y + Aa) is smaller than unity in view of (6) 
and (12), the second integral in (21) practically vanishes if 
the exponential exp( —a) is much smaller than unity. This 
will be so for sufficiently large values of a. By comparing 
equations (19) and (21), it follows that 

t*(y + Aa) = t{y) (22) 
In view of equations (14) and (22) the function x*(y) for 

a parameter a + Aa is obtained from x(y) for parameter a 
by the following transformation 

x*(y) = xb - Ao) (23) 
Consequently, once a solution has been found for 

(19), i.e., for (17), for a sufficiently high value of a, 
the solution for any greater value a + Aa of the 
parameter a is readily obtained from (23). In 
other words, in a plot of x(y) vs. y, curves for x*(y) 
are displaced by Aa in the direction of the abscissa. 

On the basis of the above reasoning, the function 
xifit) w a s calculated for a single value of the param­
eter a, and the value a = 7, which approximately 
corresponds to . ko = 10~3(K^D)1/I, was selected. 
Values of the function x(j3() were calculated from 
(17) by using an interval h = 0.2. The resulting 
curve is plotted in Fig. 1. Forty points of this 
curve were determined from /3/ = 0 to fit — 7.8. 
Values of x(0t) for values of fit larger than 7.8 were 
not calculated because the numerical calculations 
become somewhat uncertain. In view of practi­
cal applications, however, the descending branch is 
not of great interest. 

Notice that x(&t) exhibits a maximum equal to 
0.282. The value of the maximum can, conserva­
tively, be estimated to be correct within 1%. For 
a = 7, the maximum corresponds to a value of y = 
fit = 7.20. In view of equation (23) the general 
relation is 3Wx = a + 0.20. 

Properties of Irreversible Oscillographic Waves 
Up to this point the equation for oscillographic 

waves has been discussed in terms of the rate con­
stant defined by equation (3). In order, to derive 
the characteristic features of oscillographic waves 
it is necessary to explicitate the coefficients £<> 
and fi in equation (3). 

Recalling that the electrode potential varies 
linearly with time, one can write 

E = E-, - vt m (24) 

where E\ is the initial potential and v is the rate of 
potential change. By introducing this value of the 
electrode potential in the equation for k; which 
has been derived by application of the absolute 
rate theory,14 one obtains 

hT 
ko = ~ 5 exp [ ( - AG* - an, FE{)/RT] (25) 

/3 = an^F/RT (26) 

where k is the Boltzmann constant; h the Planck 
constant; S is of the order of the average distance 
in solution, between two molecules or ions of the 

(14) S. Glasstone, K. J. Laidler and H. Eyring, "The Theory of Rate 
Processes," McGraw-Hill Book Co., Inc., New York, N. Y., pp. o84-
587. 
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reducible substance; AG* the free energy of activa­
tion for the reduction of substance Ox; «a the num­
ber of electrons involved in the rate-determining 
reaction; a the transfer coefficient; and the other 
notations are conventional or have already been 
denned. 

Peak Current.—By combining equation (18) and 
(26) and introducing the value xtpt) = 0.282 cor­
responding to the peak of the function xifit), °ne ob­
tains the following fundamental equation for the 
peak current of irreversible oscillographic waves 

«P = jgy. r 'A «(«»») ^ - D /'CoP1A (27) 

or at 25° 
J'P = 3.01 X 106M(QiJIa)1AyID1ACoD1A (28) 

The units in (27) and (28) are as follows: i 
in amp.; A in cm.2; D in cm.2 sec. -1; C0 in moles-
cm. - 3 ; v in volts-sec.-1. 

If a dropping mercury electrode is used, one 
generally expresses the area A in terms of the 
rate of flow of mercury (m) and the time of the 
drop life at which the peak current is measured 
(t). By doing so, one obtains after numerical 
transformations and for 25° 

»P = 2.56 X 106w(a»a)'AmV3iV«D1/!Cof'A (29) 

where the units are the same as in (28), and m 
and t are in g. sec. - 1 and sec, respectively. 

From equations (27)-(29), it is readily seen that 
the peak current is proportional to the concentra­
tion of reducible substance, to the area of the 
electrode, and to the square root of the diffusion 
coefficient of the reducible substance. These 
features of irreversible peak currents are the same 
as those for peak currents corresponding to reversi­
ble electrode processes.16 Furthermore, equations 
(27)-(29) show that the peak current is propor­
tional to the square root of the product (<ma) 
of the transfer coefficient a by the number «a of 
electrons involved in the rate-determining reac­
tion. This rather unique feature of irreversible 
oscillographic waves makes it possible to calculate 
the product an& from experimental peak currents. 
Since »a is an integer, and an assumption can be 
made about the value of a,2-3 it is possible to deter­
mine wa from experimental peak currents. I t 
should be emphasized that the present treatment 
and consequently the calculation of «a is valid 
only when equation (1) is obeyed, i.e., when there 
are no kinetic complications such as those resulting 
from a control by the rates of consecutive electrode 
processes. Furthermore in the calculation of «a 
from the peak current, it should be ascertained that 
the experimental data have been corrected for the 
various causes of experimental errors that might 
possibly affect the peak current. Because of 
these errors it is useful to compare the value of «a 
thus obtained by the above procedure with the 
value of «a which can be deduced from the shape 
of the wave as described below. 

From the point of view of analytical chemistry, 
the dependence of the peak current on the transfer 
coefficient a is a drawback, because variations of 
a, i.e., variations of ip, may result from the presence 
of traces of adsorbable substances in solution.3 

(15) Compare with the results reported in references 6 and 7. 
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Fig. 1.—Variations of function x(Pt) (eq. (17)) with §t 
(eq.(6) and (26)). The present curve corresponds to a = 
7 ( e q . ( l l ) ) . 

From equations (27)-(29), it can be concluded 
that the peak current is proportional to the square 
root of the rate of potential change. Experi­
mentally it was observed, by using the multi-
sweep method,15a that the curve showing the 
variations of the peak current with the square foot 
of the rate of potential change exhibits a curvature 
which becomes more pronounced as the rate of 
potential change is increased. This effect was 
attributed to the irreversibility of the electrode 
process,16* and to the combined effect of the resist­
ance of the cell16 and the progressive depletion of 
reducible substance from one sweep of potential to 
another.17 On the basis of equations (27)-(29) 
it can be concluded that the curvature in the ip-
vl/l diagrams cannot be attributed to the irreversi­
bility of the electrode process in the case of an 
electrode reaction whose kinetics obeys equation 
(1). I t should be added, however, that if there are 
kinetic complications a curvature in the i-z>'A 
diagram could possibly be expected. 

Peak Potential.—From Fig. 1, it is seen that the 
value of fit corresponding to the peak current is 
equal to a + 0.20. By recalling the definition of a 
(see eq. (H)), and by introducing the value of /3 
from (26), one obtains the following value of the 
product vt at the peak potential 

^ - S t 0 +1^181108^r'] (30) 

where 
Q = 0.77 + 1.151 log /3D - 2.303 log h (31) 

By introducing the product (vt)p from (30) in 
equation (24), one obtains the peak potential Ep 

* - « - J S C 0 + 1-1511^fr'] <32> • 
or at 25° 

(15a) P. Delahay, J. Phys. Colloid Chem., 54, 630 (1950). 
(16) P. Delahay a nd G. L. Stiehl, ibid., 65, 570 (1951). 
(17) P. Delahay a nd G. Perkins, ibid., 55, 586 (1951); 66, 1146 

(1951); P. Delahay, Anal. Chim. Acta, 5, 129 (1951). 
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E £ i _ ^« [ ( ? + l i l 5 1 l o g ( 3 8 9 an^) + l i l 5 1 j p ] 

cewa 

(33) 

Equation (32) is important because it enables 
one to calculate the rate constant fa, and con­
sequently the free energy of activation AG* (see 
eq. (25)). In this calculation it is necessary to 
know the value of the product awa, but this datum 
can be obtained either from the peak current (see 
above) or by comparing the shapes of experimental 
and theoretical waves (see below). 

From equation (32), it is seen that the peak 
potential, for a given electrode process, is shifted 
toward more cathodic values as the rate of potential 
change is increased. It should be noted, however, 
that the shift of the peak potential is relatively 
small. Taking ana = 1, for example, the shift of 
Ep at 25° for a tenfold increase in the rate of po­
tential change, is 0.030 volt toward more cathodic 
values. 

Finally, on the basis of equation (23) and the 
reasoning which led to this equation, it follows that 
the peak potential is independent of the initial 
potential provided that the current at this potential 
is negligible in comparison with the peak current. 

Equation of the Wave.—On the basis of equa­
tions (11), (18) and (26), one could write the 
equation for the complete wave in terms of the 
function xO^)- The writing is rather heavy and it 
is much simpler to calculate the current along the 
wave for predetermined values of an*. This is 
readily done by using the diagram of Fig. 1 and by 
applying equation (26). Results for 25° are shown 
in Fig. 2 for values of an* from 0.2 to 1. Approxi­
mate values of an* can be determined by super­
posing experimental curves on the diagram of Fig. 2. 

From Fig. 2 it is seen that oscillographic waves 
are more drawn out as the product an* decreases. 

Fig. 2.—Oscillographic irreversible waves for various 
values of <*»» (eq. 26)). Currents are in per cent, of the peak 
current. The potential E = O corresponds to a = 7 (eq. 
(H)) for all the waves. Peak potentials are indicated by 
vertical lines, and the number above each line is the value 
of ana . 

Case of an Anodic Wave.—The previous treat­
ment is readily transposed to anodic waves. The 
following changes should be made: 1. In equa­
tion (24), the term — vt should be replaced by 
+vt; 2. In (25) the term — an*FE[ should be re­

placed by + OLUaFEi, a being the transfer coefficient 
for the anodic process. The second term on the 
right-hand of (32) and (33) should be preceded by a 
positive sign. 

Experimental 
The cathodic-anodic waves were recorded by applying 

the Sevcik modification of the Heyrovsky method. In this 
method, a voltage wave exhibiting the shape of an isosceles 
triangle is applied to the polarographic cell. In the as­
cending branch of the voltage wave, reduction occurs at the 
dropping mercury electrode; in the descending branch of the 
voltage wave, the product resulting from the cathodic proc­
ess is reoxidized. In the instrument used in this investiga­
tion, the voltage wave was generated by integrating 
the output voltage of a square-wave generator.18 The out­
put of the integrating circuit was connected to another am­
plifier having a low output impedance. The polarographic 
cell was connected to this amplifier. A cathode-ray oscillo­
graph was used for the determination of the current-poten­
tial curves. The horizontal deflection was proportional to 
the voltage applied to the cell, whereas the vertical deflec­
tion was proportional to the current flowing through the cell. 
The instrument which was used in the present investigation 
is fairly similar to the one described by Loveland and El-
ving19 and the reader is referred to the work of these inves­
tigators for a description of the circuits. 

An H-cell with a saturated calomel electrode was used 
throughout this work. Long capillaries (20 cm.) were used 
in order to increase the drop time up to 6-10 seconds. 
Waves were recorded during the life of a single drop, and the 
drop life was timed. The temperature was 30 ± 0.1°. 

Great care was taken in the calibration of the horizontal 
scale of the cathode ray tube, i.e., the potential scale. This 
calibration was obtained by applying a known voltage— 
measured with a Leeds and Northrup student potentiome­
ter—to the polarographic cell and by tracing on the screen 
a vertical line corresponding to this voltage. By repeat­
ing the operation for a few voltages, the horizontal scale 
was calibrated and the linearity of the horizontal deflection 
amplifier could be ascertained. 

Description and Discussion of Results 
Cathodic and Anodic Current-Potential Curves. 

—The waves obtained by the Sevcik method for 1 
millimolar zinc tetrammine ion in 2 molar am­
monium hydroxide +2 molar ammonium chloride 
+0 .01% gelatin are shown in Fig. 3. These waves 
were recorded with rates of potential change of 
14.8 volt sec. - 1 and 19.9 volt sec. - 1 for the cathodic 
and anodic branches, respectively. Waves were 
recorded during the life of a single drop, but for the 
sake of clarity, only the pattern corresponding to 
the maximum size of the mercury drop is shown in 
Fig. 3. 

Since diagrams of the type shown in Fig. 3 were 
not discussed by Sevcik,6 the shape of such current-
potential curves will be briefly explained. Along 
curve ABCDEFG, reduction occurs at the elec­
trode. In the initial segment of the wave AB, 
the rate constant for the electrode process is very 
small and only the capacity current is virtually 
observed. As the potential of the dropping mer­
cury electrode becomes more negative, the wave 
BCD is observed. At point D, the voltage applied 
to the cell is maximum. As soon as this voltage 
decreases the capacity current is reversed.20 Thus, 
the distance DE represents the double of the 

(18) For a discussion of integrating circuits see for example, I. A. 
Greenwood, Jr., J. V. Holdam, Jr., and D. Macrae, Jr., "Electronic 
Instruments," McGraw-Hill Book Co., Inc., New York, N. Y-, 1948, 
Chapter IV. 

(19) J. W. Loveland and P. J. Elving, / . Phys. Chem., 66, 2o0 
(1982). 

(20) See for example ref. (16) and (19>. 
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capacity current at the potential corresponding to 
point D or E. In the region EF the current de­
creases because of the progressive exhaustion of 
reducible substance in the vicinity of the electrode. 
As the potential becomes less cathodic the rate 
constant for the electrode process decreases and 
the current decreases accordingly (FG). After­
wards, in the segment GH, the current is essentially 
determined by the differential capacity of the double 
layer in this potential range. Neither oxidation nor 
reduction virtually occurs along the segment GH. 
At more anodic potentials, the substance, which has 
been formed at the electrode in the course of the 
cathodic process, is reoxidized (HIJ). At point J 
the voltage applied to the cell increases again, and 
consequently the direction of the capacity current 
is reversed. Thus the distance JK represents the 
double of the capacity current at the potential 
corresponding to point J or K. Along KL the 
anodic current decreases progressively because of 
the disappearance of the oxidizable substance. 
In general the oxidizable form will not be reoxidized 
completely because of losses by diffusion either in 
solution or in mercury (in the case of a metal 
forming an amalgam). The incompleteness of the 
anodic process is indicated by the variations of 
current along LA. Such a decrease in the anodic 
current is caused by a decrease in the rate constant 
for the anodic process (the potential becomes 
less anodic). Had the reoxidation process been 
completed at the potential corresponding to point 
L, the current would not have virtually changed 
between L and A, except for a possible variation of 
the differential capacity of the double layer. 

In general it is observed that the cathodic peak 
potential is shifted toward more negative values as 
the drop grows. This shift is caused by an in­
crease in the ohmic drop in the cell and the measur­
ing circuit. Likewise, the anodic peak potential 
is shifted toward more positive or less negative 
potentials as the drop grows. The shifts in the 
peak potentials are indicated in Fig. 3 by dotted 
lines. In order to obtain correct peak potentials 
it suffices to extrapolate the potential to zero cur­
rent as indicated in Fig. 3 (points _EP,C and £p ,a). 

The relative positions of the cathodic and anodic 
branches depend on the magnitude of the over-
voltages involved in the electrode process. For 
certain electrode reactions the anodic branch is 
shifted in the potential range where mercury is 
oxidized, and it is impossible to observe the anodic 
current-potential curve with a mercury electrode. 

From the present discussion, it is seen that the 
theoretical treatment reported in this paper is 
applicable to the cathodic branch of the wave. 
This is not rigorously so, however, for the anodic 
branch, because the initial distribution of oxidiz­
able substance in the solution or in mercury does not 
correspond to the semi-infinite diffusion problem 
which is treated in the present paper, i.e., the initial 
concentration of oxidizable substance C(x,o) is 
not independent of x. The mathematical treat­
ment of the problem corresponding to the experi­
mental conditions achieved in the present experi­
ment would be exceedingly intricate, and it is far 
more convenient, but also less rigorous, to apply 

T 1 1 '—r 

Fig. 3.—Cathodic and anodic waves for zinc tetrammine 
ion (see text). Potentials are values versus the saturated 
calomel electrode. 

the present theory to the anodic segment of the 
current-potential curve. 

The heights of the cathodic and anodic waves are 
generally not the same since these heights are pro­
portional to the quantity (ana)

l/,D'/'. I t is only 
when this quantity is the same for both the cathodic 
and anodic processes that one could expect waves 
of equal heights but, even then, losses of the oxidiz­
able substance by diffusion during the cathodic 
cycle would cause the anodic peak current to be 
somewhat smaller than the cathodic peak current. 
Likewise, the shape of the cathodic and anodic 
waves will generally not be the same. For ex­
ample, if aria, for the anodic process is smaller than 
for the cathodic process, the anodic wave is more 
drawn out than the cathodic wave (see Fig. 2). 

Verification of Equations (18) and (32).—The present 
treatment was verified for the case of Fig. 3. The theoreti­
cal cathodic and anodic waves corresponding to values of 
a« a equal to 1 and 0.6, respectively, are shown in Fig. 4. 
Dots in the same diagram are experimental currents ob­
tained by correcting the experimental data for the ohmic 
drop and the capacity current. In the comparison of the 
experimental and theoretical results, the peak current and 
peak potential of both the experimental and theoretical 
waves were assumed to be identical. From Fig. 4 it is seen 
that the agreement between experimental and calculated 
values is very good. I t should be added, however, that the 
position of the corrected experimental points is somewhat 
uncertain mainly on account of the correction for the ca­
pacity current. Therefore, the agreement between experi­
ment and theory is possibly not as good as one would infer 
from Fig. 4. Note that the above value of <*«a = 1 is in 
fairly good agreement with the value an* = 0.93 which was 
calculated from data obtained for 35° by the conventional 
polarographic method.3 

The free energy of activation AG =*• was calculated by ap­
plication of equation (32) and on the basis of the following 
data: a n . = 1 (see above), S = 2.55 X 1O-7 cm., D = 0.6 
X 10~6 cm.2 sec. - 1 ,2 1 v = 14.8 volts sec . - 1 , EB = - 1 . 2 9 
volts (versus N .H.E . ) . The corresponding activation free 
energy of 33 kcal. is in good agreement with the value of 37 
kcal. obtained by the conventional polarographic method 
for a temperature of 35°. 

(21) This is an estimated value. 
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Fig. 4.—Comparison of theoretical and experimental 
cathodic (top) and anodic waves for zinc tetrammine ion 
(see text). Curves are theoretical waves and dots are cor­
rected experimental currents. Potentials are referred to the 
saturated calomel electrode, and currents are in per cent, of 
the peak current. 

As a final comment it is of interest to note that the sum 
of the products <*«a for the cathodic and anodic processes 
should be an integer if the anodic and cathodic processes 
involved the same rate-determining step. This is readily 
accounted for if one considers that the sum of the transfer 
coefficient for the cathodic and anodic processes is equal to 
I.14 In the case of the reduction of zinc tetrammine ion 
(Fig. 3 and 4), the above sum is equal to 1.6. The differ­
ence between this value of 1.6 and the next integer, 2, is 
too large to be accountable by experimental errors. Two 
explanations can be advanced for this abnormal value of 1.6. 
First, it can be argued that the theoretical treatment is not 
rigorous in the case of anodic waves obtained by the present 
experimental method. This is unquestionably so, but it is 
doubtful that the change in the shape of the wave would be 
so drastic as to cause a variation of an* (for the anodic wave) 
from 1 to 0.6 (see Fig. 2). The abnormal value of 1.6 can 
also be explained by assuming that the electrode process 
involves two simultaneous rate-determining steps consum­
ing one and two electrons, respectively.22 If the latter ex-

(22) The latter hypothesis is substantiated by a recent investiga­
tion of the reduction of zinc tetrammine ion by the conventional polaro-
graphic method. It was observed in this Laboratory by Mr. C. F. 

planation is considered, it should be kept in mind that 
equation (1) is still valid in the case of a process involving 
two simultaneous rate-determining steps, but that the par­
ameter kt represents then the sum of two rate constants. 
As a result, the present treatment is not rigorously applicable 
since equation (3) is not obeyed when kt is the sum of two 
exponential functions of the electrode potential. However, 
the sum of two exponential functions can be approximated 
by an exponential function in a reasonable interval of varia­
tion of the variable. Hence, equation (3) can be used as a 
first approximation, and this accounts for the agreement be­
tween experimental and theoretical data as indicated in 
Fig. 4. Likewise, this explains why the log kt vs. E dia­
gram obtained by the conventional polarographic method is 
linear. 

The above considerations show that kinetic complications 
can sometimes be detected by calculating the sum of the 
products a«a for the cathodic and anodic waves. 

Conclusion 

The properties of irreversible oscillographic 
waves are quantitatively accounted for by the 
theory developed in this paper. In applying the 
present treatment, it should be kept in mind that 
the above derivation is valid only for electrode 
processes whose kinetics obeys equations (1) and 
(3). Discrepancies resulting from kinetic complica­
tions can be detected by comparing the shape of 
experimental and theoretical waves or by calculat­
ing the sum of the products awa for the cathodic 
and anodic waves. 

Summarizing, the oscillographic method is to be 
regarded, from the point of view of electrochem­
istry, as a useful complement of conventional 
polarography. 
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Pillon that the product an& for the above reduction varies markedly 
with temperature. 


